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Abstract

Wildfires are escalating in frequency and severity, particularly in high-risk regions
such as Alberta, Canada, where traditional detection systems are becoming increas-
ingly insufficient. Existing approaches often rely on centralized control or overlook
key constraints, such as partial observability, terrain complexity, and communication
limitations. To address this gap, we propose a fully decentralized multi-agent re-
inforcement learning (MARL) framework for wildfire detection using UAV swarms.
Our method integrates real geographic data into a grid-based simulator and employs
intrinsic-motivation-enhanced Independent Proximal Policy Optimization (IPPO), al-
lowing each agent to learn independently and adaptively. This design is well-suited
for large-scale, unstructured environments where centralized coordination is infeasible.
Agents learn to balance exploration, fire detection, and risk mitigation through a hybrid
reward scheme. Experimental results in simulation demonstrate the effectiveness of our
method for early and reliable wildfire detection in large, remote landscapes. This work
lays the foundation for scalable, robust, and communication-efficient UAV swarm sys-
tems for wildfire monitoring, with significant potential to reduce ecological, economic,
and human costs.

1 Introduction

Wildfires have surged in frequency and intensity over the past few decades. Jolly et al. (2015) found
that from 1979 to 2013, the length of fire-weather seasons increased by nearly 19%. They also found
that the area globally affected by these long fire seasons more than doubled (Jolly et al., 2015). This
trend is particularly prominent in Alberta, Canada. Whitman et al. (2022) found that in Alberta, from
1970 to 2019, the number of large wildfires, the area burned, as well as the size of fires increased
significantly. During the 2023 Wildfire season, over 2.2 million hectares were burned (Beverly &
Schroeder, 2025). This represented an increase of nearly 63% in total area burned from the prior
record in 1981, amounting to ~4% of Canada’s total forest cover (Beverly & Schroeder, 2025; Jain
et al., 2024). Research from Hanes et al. (2019) has shown that in Canada since 1959, the number
of large fires has increased significantly, the fire season has become longer, and western Canada, in
particular, is experiencing an increase in the area burned and the number of large fires.

Emissions created by the 2023 Canadian wildfires alone amount to similar total annual emissions
created by large developed nations (Byrne et al., 2024). While 2023 was an abnormally warm and
dry year, Byrne et al. (2024) suggests that by the 2050s, such ranges will be typical, which in turn
creates a positive feedback loop where intense wildfires accelerate warming trends, creating more
wildfires (Liu et al., 2019).
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However, despite the scale and severity of wildfires, existing detection methods struggle to keep
pace with them. Satellite-based sensing can take time to process data and can struggle to keep up
with the dynamic, fast-moving natures of wildfires, while manned aircraft for detection have high
associated costs1.

Unmanned aerial vehicles (UAVs) can help fill this detection gap. Such UAV systems can be small
enough to be deployed to remote regions of Canada and provide valuable data. Coordinated swarms
of UAVs can provide real-time coverage and adapt to emerging wildfire behavior.

Coordinating these drone systems over a dynamic and partially observable landscape is complex,
and factors including limited communication range, energy consumption, and the scalability of co-
ordination protocols all pose significant challenges (Yanmaz et al., 2018).

Multi-agent reinforcement Learning (MARL) provides a way to learn policies that can balance ex-
ploration, detection, and safety from data (Sutton et al., 1998; Tan, 1993). In this work, we show the
first steps towards using MARL in a simulated setting to detect wildfires.

This work proposes wildfire detection as a cooperative MARL problem over Alberta’s terrain fea-
tures. We apply Independent Proximal Policy Optimization (IPPO) (de Witt et al., 2020), allowing
each UAV to learn with only local observations.

2 Related Work

2.1 UAV-based wildfire monitoring

UAV usage for real-time fire detection and mapping is a growing research field. Bailon-Ruiz et al.
(2022) deployed a fleet of UAVs equipped with thermal and RGB cameras to track fire bound-
aries in near real-time. Hopkins (2024) trained UAV teams via MARL in a simulated 3D wildfire
response environment, focusing on navigation and hotspot identification. Recent work by Howard
et al. (2024) on drone coordination leveraged state machines and Godot to create a highly customized
virtual environment for drone simulation, citing that preexisting approaches lack flexibility.

Pham et al. (2018) discussed distributed coverage schemes for UAV swarms to minimize the overlaps
between the field of view for each agent. The FireDronesRL project2 explored a similar 2D approach
to the one we detail in this work, but in an entirely simulated world. Related simulation frameworks
for disaster scenarios, such as DisasterReliefBot-CoppeliaSim3 focus on urban disaster recovery and
detecting fire hazards. Tools such as MODIFLY by Cofield et al. (2025) provide an enhanced suite
of tools for 3D UAV simulation, considering factors such as dynamic communication modeling.
Ding et al. (2023) benchmarked cooperative MARL algorithms on drone routing tasks. More recent
work by Zhao et al. (2025) augments multi-UAV MARL with noise-resilient communication and
attention mechanisms to improve robustness under packet loss.

Earlier work by Seraj et al. (2021) employed heterogeneous teams in randomly generated envi-
ronments. The end user can specify specific parameters, such as the number of homes, trees, and
hospitals. However, the approach outlined in Seraj et al. (2021) is incompatible, mainly with modern
MARL frameworks like PettingZoo (Terry et al., 2021).

2.2 Multi-Agent RL algorithms

For cooperative MARL robotics, methods can broadly fall into two categories: centralized training
for decentralized execution (CTDE) and decentralized training and execution (DTE) (Amato, 2024).
Sunehag et al. (2017) introduced value decomposition methods such as VDN, and Rashid et al.
(2018) later proposed QMIX.

1https://www.gao.gov/products/gao-25-108161
2https://github.com/yunijeong5/FireDronesRL
3https://github.com/amnotme/DisasterReliefBot-CoppeliaSim
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Actor–critic methods, such as MADDPG (Lowe et al., 2017) and counterfactual baseline COMA
(Foerster et al., 2024), extend CTDE to continuous control. Independent learners, including IQL
(Kostrikov et al., 2021) and IPPO (de Witt et al., 2020), use a decentralized critic, making these
approaches more complex and realistic. Lacking centralized control makes them more robust in
environments with limited communication. Huang et al. (2016) also found that under decentral-
ized learning, agents can learn and develop communication protocols to solve coordination tasks
in partially observable settings. Recent work on learning cautious behavior under uncertainty (Mo-
hammedalamen et al., 2021) has demonstrated that agents can autonomously develop risk-averse
policies when facing novel situations, which aligns with our approach of developing uncertainty-
aware wildfire detection strategies.

Domain-specific adaptations of MARL include resource allocation in UAV networks (Cui et al.,
2020) and comparisons of short-term vs. long–term coordination (Qin & Pournaras, 2024). Our
work builds upon prior approaches by applying IPPO to train fully decentralized, communication-
light UAV policies for wildfire detection over terrain in Alberta, Canada.

3 Methods

3.1 System Overview

This work introduces a novel approach to wildfire monitoring by creating a simulation integrating
real-world geographic data with IPPO online MARL.

We obtained OpenStreetMap (OSM) data (OpenStreetMap contributors, 2017) via the API and con-
verted the real-world geographic coordinates into a discretized grid-based simulation space while
preserving spatial relationships and feature densities. This conversion enables our experimentation
to be conducted in a 2D grid world environment while preserving the geographic features of the
locations. We then simulated wildfires on top of the grid world features. This method enabled our
UAV agents to learn monitoring strategies roughly based on real-world geographic data.

For our work, we selected two cities in Alberta, Canada, that have been affected by severe wildfires:
Fort McMurray4 (Mamuji & Rozdilsky, 2018) and Athabasca5. The cropped OSM maps during
various processing steps can be found in Appendix A and B.

3.2 Wildfire Simulation Environment

The wildfire scenarios and modeling were implemented using a probabilistic cellular automa-
ton (CA) fire–spread model in the grid world (see Appendix C). Each cell in the grid world
s ∈ {EMPTY,TREE, . . . } has a terrain-specific vulnerability βs and finite burn duration. At each
time step, any burnable neighbor ignites with the below probability:

pspread = min
(
1, pf βs

[
1 + (u·w)wstr

])
, (1)

where pf is the base spread probability, u the unit vector toward the burning neighbor, and w the
wind vector (Ramadan, 2024; Zadeh et al., 2025). Burnt cells may later regrow; additional details
on this can be found in Appendix C. The CA model provides us a simple yet realistic way to test fire
dynamics.

3.3 UAV Agent Design

Each UAV agent operates with partial observability of the environment through each agent’s local
view. At each timestep t, an agent i receives the following observation tuple:

4https://earthobservatory.nasa.gov/images/88039/fort-mcmurray-burn-scar
5https://globalnews.ca/news/11169138/athabasca-county-boyle-wildfire-may-2025
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Oi = {Vlocal, Pself , Pothers, Iglobal} (2)

The agent’s local view Vlocal is a (2r + 1) × (2r + 1) grid centered on the agent’s position, where
r is the view range. This view is encoded as a multi-channel tensor representing different terrain
features (trees, buildings, natural areas, fires) through one-hot encoding.

Agents navigate using a discrete action space A ∈ {STAY,UP,DOWN,LEFT,RIGHT}, repre-
senting possible movement directions in the grid. Constraints are included to ensure agents remain
within the operational area. Additional information on the action space can be found in Appendix D.

The agent design approach balances the need for local fire detection and broader environmental
and situational awareness by using local and global information. Mathematical definitions of the
observation and action spaces can be found in Appendix D, and the complete reward computation
can be found in Appendix E.

3.4 Independent Proximal Policy Optimization (IPPO)

Our MARL approach utilizes IPPO, where each UAV agent learns independently using its own PPO
algorithm (Schulman et al., 2017) while sharing the same environment. The reward structure com-
bines both extrinsic and intrinsic motivations to encourage effective fire monitoring and exploration:

At each time step t, each agent i receives an instantaneous reward

Rt
total =

N∑
i=1

(
Rext

i +Rint
i

)
. (3)

The discounted return for agent i is then

Gt
i =

T−t∑
k=0

γk Rt+k
i , (4)

Where N is the number of agents, Rext
i is the extrinsic reward for fire detection and monitoring, and

Rint
i is the intrinsic reward for agent i. See Appendix F for the full update schedule and clipped-PPO

objective.

Our approach builds on the intrinsically motivated reinforcement learning framework first intro-
duced by Chentanez et al. (2004). Oudeyer & Kaplan (2007) provide a comprehensive typology
of computational methods to intrinsic motivation, which informs our design of exploration bonuses
and risk-awareness components. The distinction between intrinsic and extrinsic motivation in rein-
forcement learning (Barto, 2013) guides our reward structure design, where agents balance external
fire detection objectives with internal exploration drives.

Early work on combining intrinsic and extrinsic rewards in constrained settings was explored by
Uchibe & Doya (2007), with further developments in robotic applications by Uchibe & Doya (2008).
Recent work by Rakotoaritina et al. (2025) outlines a unified information-theoretic formulation of
novelty, surprise, and empowerment as intrinsic rewards, demonstrating their effectiveness in envi-
ronments with hidden subgoals. In this work, we hand-specify strategic-level terms that support our
multi-objective reward design.

The instantaneous intrinsic reward is decomposed into five components; see Eq. (12) for the full
definition.

The hybrid signal presented to IPPO is the convex combination

Rhybrid
i (t) = λ1 R

ext
i (t) + λ2 R

int
i (t), (λ1, λ2) = (0.7, 0.3), λ1 + λ2 = 1. (5)
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Key scalars α, β, and the mixture weights γ balance detection, safety, and exploration; see the
compact summary in Appendix F.

The implementation leverages Stables Baseline 3 (Raffin et al., 2021), with each agent maintaining
independent neural networks for both policy and value functions. Details on the architectures can
be seen in Appendix H.

The full coefficient grid (Table 2), strategy profiles, and derivative coupling derivations supporting
Eq. (26) are provided in Appendix G.

4 Results

We evaluated the system across the real-world environments of Fort McMurray and Athabasca fo-
cusing on detection performance, coordination efficiency, and strategic behavior under varying ter-
rain conditions.

(a) Athabasca (b) Fort McMurray

Figure 1: Average evaluation coverage performance for both environments. Results averaged across
5 independent runs with different random seeds, with shaded regions indicating standard devia-
tion. Both environments show similar learning trajectories, achieving peak coverage around 1.5M
timesteps before stabilizing. The consistent performance across different geographical terrains
demonstrates the robustness of our IPPO-based approach for decentralized wildfire monitoring.

Additional comprehensive multi-seed analyses are provided across multiple appendices: Appen-
dices I and J present detailed performance comparisons, Appendices K and L show spatial coverage
behavior analysis, Appendices M provide cross-seed statistical validation for Athabasca, and Ap-
pendices N and O demonstrate strategic coordination patterns across both environments.
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(a) Athabasca (b) Fort McMurray

Figure 2: Average reward progression during training for both environments. Results averaged
across 5 independent runs with different random seeds, with shaded regions indicating standard
deviation. Both environments show steady learning with rewards increasing from near-zero to ap-
proximately 6000 units, peaking around 1.5M timesteps. The hybrid reward function successfully
balances extrinsic fire detection rewards with intrinsic exploration and coordination bonuses, demon-
strating effective multi-objective optimization in both geographical settings.

Figure 3: Average risk coverage progression for Fort McMurray environment showing risk-aware
monitoring behavior. Results averaged across 5 independent runs with different random seeds, with
shaded regions indicating standard deviation. The steady increase to approximately 20% risk cov-
erage demonstrates that agents successfully learn to prioritize high-risk areas (forested regions near
river corridors) through the intrinsic risk-awareness component of our reward function. This spe-
cialized behavior emerges without explicit programming, showcasing the effectiveness of our hybrid
reward approach in balancing exploration with targeted risk monitoring.

5 Discussion

Our simulation-based results demonstrate several key findings that advance understanding of MARL
applications in wildfire monitoring.

The remarkably consistent performance across both Athabasca and Fort McMurray environments
(Figures 1 and 2) demonstrates that IPPO can effectively learn coordinated behaviors without ex-
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plicit communication protocols. Both environments achieved similar peak performance around 1.5M
timesteps, with agents reaching approximately 58% coverage efficiency. This suggests our approach
generalizes well across different geographical constraints, addressing a critical limitation of central-
ized approaches in real-world deployment scenarios where communication may be unreliable.

Despite different terrain characteristics, Athabasca’s more uniform layout versus Fort McMurray’s
river-corridor geography, both environments yielded similar learning curves. The slight performance
variations reflect the adaptive nature of our approach: Athabasca’s uniform terrain enabled more
systematic coverage patterns, while Fort McMurray’s complex geography required more dynamic
coordination strategies. This demonstrates the robustness of our intrinsic motivation framework
across varying geographical constraints.

Most intriguingly, our agents learned to balance exploration with cautious behavior near high-risk
areas. Figure 3 shows agents achieving approximately 20% risk coverage in Fort McMurray, pri-
oritizing forested regions near river corridors without explicit programming of this behavior. This
emergent risk-awareness represents a significant advancement over baseline approaches that lack
understanding of environmental context.

Results were averaged across five independent runs, with standard deviations shown. The consistent
convergence patterns across different random seeds demonstrate the reliability of our approach for
real-world deployment considerations.

While building on established IPPO foundations, our key contributions include 1) the integra-
tion of real geographical data into MARL training environments, preserving spatial relationships
for controlled experimentation; 2) a hybrid reward structure that balances task-specific objectives
with emergent coordination behaviors; 3) showing that risk-aware behaviors can emerge from local
decision-making without global coordination.

While our grid-based simulation provides controlled validation of core MARL principles, it repre-
sents a simplification of fundamental wildfire dynamics. The approach lacks realistic sensor noise,
3D terrain modeling, limited-bandwidth communication constraints, and heterogeneous terrain ef-
fects on fire spread. Future work will extend to physics-based simulators incorporating these factors,
as suggested by reviewer feedback on simulation realism. Additionally, integration with actual UAV
hardware and real-world communication protocols represents the next critical development phase.

Detailed multi-seed performance analyses (Appendices I, J) reveal consistent agent specialization
patterns and coordination effectiveness across different random initializations. Comprehensive cov-
erage behavior analysis (Appendices K, L) illustrates spatial coordination strategies and balanced
area allocation. Cross-seed statistical validation (Appendix M) demonstrates learning robustness in-
dependent of initial conditions for Athabasca. Strategic behavior analysis (Appendices N, O) shows
sophisticated coordination patterns emerging consistently across both Athabasca and Fort McMur-
ray environments.

6 Conclusion and Future Work

The strategic wildfire monitoring system represents a significant advancement in MARL for en-
vironmental monitoring applications and situational awareness. The integration of intrinsic reward
mechanisms with strategic role specialization demonstrates quantifiable improvements across all key
performance metrics. The modular architecture enables flexible deployment across various wildfire
scenarios while maintaining computational efficiency and scalability.

The system’s ability to achieve emergent coordination without explicit communication, combined
with adaptive strategy selection and risk-aware exploration, positions it as a robust solution for real-
world wildfire monitoring applications.
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We expect to expand our research in the future to leverage CoppeliaSim6 to create a 3D environment
based on real-world terrain data to train our UAVs in using MARL. Another option would also be
to test in Minecraft using data from OSM to create 3D environments using tools such as Arnis7.
During this period, we aim to test various communication protocols in a simulated setting similar
to Arnab et al. (2023). After that, we hope to test our MARL implementation on small-scale real
drones in a controlled environment. Currently, we only use UAVs to detect fires; coordination with
agents designed to extinguish such fires would be an important next step as well. Such an approach
would require different agent designs, as action agents designed to extinguish fires would need to
carry a large payload of water or fire retardant.

Ongoing research into using large language models for robotic control in unpredictable environ-
ments (Mon-Williams et al., 2025; 202, 2025) provides an interesting avenue for future research.
Such foundation models could aid in dynamic wildfire-like settings, and large vision models in
robots have been explored to support complex tasks, such as surgery (Min et al., 2025). Models
such as Gemini have demonstrated strong spatial awareness and visual reasoning, and could be
utilized to enhance UAV situational awareness (Gibney, 2025).

In the future, we also hope to explore applying aspects of the free energy principle to our UAV
system and compare it to RL implementations (Bos et al., 2022; Parr et al., 2022).

Broader Impact Statement

Our MARL UAV-based wildfire detection system shows promise to enable earlier and more reliable
identification of wildfires in vast, remote regions. By translating our work to real-world drone
systems, we hope to support faster response times and reduce ecological, economic, and human
costs.

6https://www.coppeliarobotics.com/
7https://github.com/louis-e/arnis
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A OSM Map to Grid, Athabasca

Figure 4: Athabasca, Alberta – OSM Grid-Map Alignment Validation. Top-left: Raw Open-
StreetMap (OSM) rendering of Athabasca, illustrating the urban layout, road network, surround-
ing forest areas, and the river. Top-right: Enhanced OSM feature map rendered as a 100×100
grid. Feature labels include trees/forest (green), roads (yellow), buildings (red), water (blue), and
unused (grey). Bottom-left: Agent’s internal environment state with cell-wise classification of fea-
tures. Summary includes: 4651 forest/tree cells, 1311 roads, 316 water bodies, and 122 buildings.
Bottom-right: Feature overlay map with the agent’s interpreted grid overlaid on the OSM back-
ground. Agent 2’s current location is indicated; transparency shows alignment quality. The legend
defines all color encodings including the agent’s starting position.
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B OSM Map to Grid, Fort McMurray

Figure 5: Fort McMurray, Alberta – OSM Grid-Map Alignment Validation. Top-left: Actual Open-
StreetMap (OSM) rendering of Fort McMurray, showing the river system, urban infrastructure, and
surrounding forested terrain. Top-right: 100×100 grid-based enhanced OSM feature map with
cells labeled as trees/forest (green), roads (yellow), buildings (red), water bodies (blue), and un-
used (grey). Bottom-left: Agent’s internal environment state with feature class counts (trees/forest:
4425, roads: 1594, water: 310, buildings: 71), providing a structured grid representation of the
landscape. Bottom-right: Feature overlay showing the agent’s interpreted grid atop the actual OSM
map. Agent 2’s current position is marked; transparency indicates grid alignment with real-world
features. A legend defines all color codings, including the agent start position (black border).
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C Fire Spread Cellular Automaton

This section summarizes the implementation of the fire spread CA approach. We simulated fire
propagation on a 2D grid with synchronized updates.

C.1 Cell States and Parameters

Each cell si,j ∈ {EMPTY,TREE,BUILDING,NATURAL,LANDUSE,FIRE,BURNT}.
Non-burnable states (EMPTY, FIRE, BURNT) have zero vulnerability, burn duration, and regrowth
scaling. All other per-state constants (vulnerability βs, burn duration ds, and regrowth scaling γs)
are summarized in Table 1.

Table 1: State-specific parameters: vulnerability, burn duration (in units of d0), and regrowth scaling.

Cell state Vulnerability βs Burn duration ds Regrowth scaling γs

TREE 1.0 d0 0.5
BUILDING 0.7 1.5 d0 0.1
NATURAL 0.5 0.7 d0 1.5
LANDUSE 0.3 0.5 d0 2.0

C.2 Fire Spread and Duration

At each step t→ t+ 1, a burnable cell with at least one burning neighbor ignites with

pspread = min
(
1, pf βs

[
1 + (u·w)wstr

])
(6)

Where pf is the base spread probability, u the unit vector toward the burning neighbor, w the unit
wind vector, and wstr its strength. Upon ignition, the burn timer is set to τ = ds (Table 1). When
τ ≤ 0, the cell becomes BURNT.

Each BURNT cell may regrow each step with base probability pg scaled by γs (Table 1) if it has
enough neighbors of the corresponding type (1 BUILDING neighbor to regrow BUILDING, or 2 of
TREE, NATURAL, or LANDUSE to regrow those); otherwise it defaults to NATURAL.

C.3 Update Algorithm

[1] cells (i, j) in parallel si,j(t) FIRE τi,j ← τi,j−1 τi,j ≤ 0 si,j ← BURNT TREE, BUILDING,
NATURAL, LANDUSE any neighbor is FIRE compute pspread rand< pspread si,j ← FIRE; τi,j ←
dsi,j BURNT sample regrowth EMPTY no regrowth

This captures wind-driven anisotropy, flammability, terrain-dependent burn durations, and
neighborhood-based regrowth, all in an O(1) update per cell.
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D Observation and Action Specifications

Observation Encoding

For each agent i at time t, the observation is

ot
i =

(
Lt
i, p

t
i, g

t
)
, (7)

with

Lt
i(u, v) = grid

(
xt
i + u, yti + v

)
, (u, v) ∈ [−R,R]2,

pt
i =

1

G− 1
(xt

i, y
t
i)

⊤,

gt =
(
t/Tmax, F

t/G2
)⊤

.

(8)

In our implementation this corresponds to a Gym (Towers et al., 2024) Dict space with three
entries:

Local view Lt
i: a one-hot tensor of shape (2r + 1) × (2r + 1) × C (with C = 7 terrain channels)

that encodes each cell in the agent’s view-range r as a binary feature vector (empty, tree, building,
natural, fire, burnt, landuse). This multi-channel representation mimics real UAV sensor outputs and
feeds directly into the CNN encoder.

Normalized position pt
i: a Box(0, 1, (2, ),float32) vector containing the agent’s (x, y) scaled

by 1/(G − 1). This two-layer MLP input allows learning of positional biases and edge-avoidance
behavior.

Global features gt: a Box(0, 1, (2, ),float32) vector whose first component is the fraction of
elapsed steps t/Tmax and whose second is the fire density F t/G2. A separate MLP embeds temporal
progress and overall environment severity.

Together, these three modalities are encoded via specialized heads (CNN for L, MLPs for p and g),
then concatenated into a single feature vector for downstream actor–critic.

Action Space

Each agent selects
ati ∈ {0, 1, 2, 3, 4}. (9)

which maps to

∆(a) =



(0, 0), a = 0,

(−1, 0), a = 1,

(1, 0), a = 2,

(0,−1), a = 3,

(0, 1), a = 4.

(10)

and updates position via

(xt+1
i , yt+1

i ) = clip[0,G−1]2
(
(xt

i, y
t
i) + ∆(ati)

)
. (11)

This is implemented in Gym as a Discrete(5) space. Any move outside the grid is restricted by clip.
When mutiple agents chose to move to the same target cell, a random tie breaker allows one agent
to move to the cell and others remain in place.
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E Reward Specification

Intrinsic Reward

The intrinsic signal fed to PPO is the same as Eq. (12):

Rint
i (t) = γ1Ri,1(t) + γ2Ri,2(t) + γ3Ri,3(t) + γ4Ri,4(t) + γ5Ri,5(t), (12)

with mixture weights γ = (0.15, 0.10, 0.08, 0.20, 0.40) (see Table 2). The five components are

Ri,1(t) = α
∑

(x,y)∈Vi(t)

1
[
G(x, y, t) = FIRE ∧ G(x, y, t−1) ̸= FIRE

]
, (detection) (13)

Ri,2(t) = β 1
[
(xi, yi) ∈ FIRE

]
, (safety penalty) (14)

Ri,3(t) = ξ
∑
c∈Vi

imp(c)

Vc(t) + 1
, (exploration) (15)

Ri,4(t) = −κ
1√

Vyi,xi
(t) + 1

, (anti–clustering) (16)

Ri,5(t) = ρ
∑
c∈Vi

wrisk[c]

dist(i, c)
, (risk awareness) (17)

where the scaling constants α, β, ξ, κ, ρ are listed in Table 2.

The intrinsic signal is mixed with the task reward as

Rhybrid
i (t) = λ1R

ext
i (t) + λ2R

int
i (t), (λ1, λ2) = (0.7, 0.3). (18)

Episodic Penalty

At episode termination (t = T ) we penalise the fraction of terrain burnt:

ri,epi = −η
#burnt cells

#total cells
, (19)

with η = 100 (identical for all agents).

Total Return

The per-step return used by IPPO is therefore

Rtot
i (t) = Rhybrid

i (t) + 1t=T ri,epi. (20)

This specification is now perfectly aligned with the equations in Sec. 3 and the coefficient definitions
in Table 2.

The detection bonus drives agents to explore to efficiently identify new fires. We penalize the agent
for entering cells currently burning to promote a more cautious approach. Using episodic alignment,
we ensure that learned policies balance the goal of immediate detection and the global objective of
minimizing total area burned.
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F Agent–learning hyper-parameters

Unless otherwise stated we keep the values in Tables 2 and 3 fixed for all experiments.

Table 2: Global coefficients used by every agent during training and evaluation.

Symbol Value Role

α 1.0 Fire-detection bonus
β 100 Episodic burn penalty
γ1:5 (0.15, 0.10, 0.08, 0.20, 0.40) Mixture weights of intrinsic reward terms
ξ 0.08 Exploration scale
κ 0.10 Anti-clustering scale
ρ 0.02 Risk-awareness scale
λ1 0.7 Extrinsic weight in hybrid reward
λ2 0.3 Intrinsic weight in hybrid reward
ω1 0.5 Coverage weight in overall score
ω2 0.3 Coordination weight in overall score
ω3 0.2 Response-time weight in overall score
r 5 Agent view range (App. D)

Table 3: Low-level PPO hyper-parameters shared by all agents.

Parameter Value Description

Discount factor γdisc 0.99 Immediate vs. future reward trade-off
GAE parameter λ 0.95 Advantage-estimation smoothing
PPO clip coefficient ϵ 0.20 Trust-region width
Entropy coefficient βent 0.01 Exploration incentive
Value-loss coefficient c1 0.50 Weight of critic loss
Policy-update frequency 2048 Env. steps between updates
PPO epochs per update 4 Passes over each mini-batch
Mini-batch size 512 Samples per gradient step
Learning rate 3× 10−4 Adam step size

IPPO Training Schedule and Objective

In our implementation, the policy updates occur every 2048 steps, with four epochs of optimiza-
tion per update. This allows each UAV to develop specialized behaviors while contributing to the
collective monitoring objective through both extrinsic and intrinsic motivations.

Training proceeds in iterations, with each iteration consisting of multiple episodes. The agents’
policies are updated using the PPO objective:

LCLIP(θ) = Et

[
min

(
rt(θ) Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
. (21)

Here

rt(θ) =
πθ(at | ot)
πθold(at | ot)

, (22)

and

Ât =

T−t∑
k=0

γk
disc

(
Rt+k

i − Vϕ(ot+k)
)
, (23)
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where each return Rt+k
i includes both extrinsic and intrinsic rewards. This objective ensures sta-

ble policy improvements while preventing destructively large updates, allowing agents to balance
immediate fire monitoring tasks with long-term exploration and coordination strategies.
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G Strategic Optimisation

Every 10 environment steps the coordinator decides which high-level monitoring strategy{
EXPLORATION, PATROL, FIRE_RESPONSE,RISK_MONITORING

}
each of the n agents should fol-

low. We begin by building a cost matrix C ∈ Rn×n, where entry Ci,s quantifies how undesirable it
is for agent i to play strategy s:

Ci,s = ω1

(
1− cov

(s)
i

)
+ ω2 overlap

(s)
i + ω3 resp_time

(s)
i . (24)

Here cov
(s)
i is the predicted incremental coverage if agent i takes strategy s; overlap(s)i is the cor-

responding redundant-coverage estimate; and resp_time
(s)
i is an empirical fire-response proxy. The

weights ω1:3 are listed in Table 2.

Greedy assignment rule. Instead of an O(n3) optimal solver we use the following O(n2) greedy
heuristic (simple and fast for the default n=4):

σ(1) = argmin
s

C1,s, σ(k) = arg min
s/∈σ(1:k−1)

Ck,s, k = 2, . . . , n. (25)

Processing the agents in a fixed order guarantees that each strategy column is used at most once.
The selected mapping σ : {1, . . . , n} → {1, . . . , n} is broadcast as a one-hot vector and modulates
every agent’s intrinsic reward:

Rint
i (t) = γ Rexplore

i (t) + δ Rcoord
i (t) + η Rrisk

i (t) + ζ Rstrategy
i (t), (26)

[H] [1] agents compute local fire density, visit counts, risk heatmap build cost matrix Ci,s via
Eq. (24) S ← {} already-assigned strategies k = 1 to n s⋆ ← argmins/∈S Ck,s assign s⋆ to agent
k; S ← S ∪ {s⋆} broadcast one-hot strategy vectors to agents

Link to intrinsic shaping. The cost entries in (24) and the intrinsic decomposition share the same
heuristics:

Rcoord
i (t) = −κ 1√

Vyi,xi
(t) + 1

, κ = 0.10, (27)

Rrisk
i (t) = ρ

∑
c∈Vi

wrisk[c]

dist(i, c)
, ρ = 0.02, (28)

Rexplore
i (t) = ξ

∑
c∈Vi

imp(c)
Vc(t) + 1

, ξ = 0.08. (29)

These terms are used only for reward shaping; they do not alter the PPO objective beyond the
standard clipped surrogate.
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H Neural Network Architecture

Each agent’s policy/value network fθ first encodes its multi-modal observation into a single feature
vector

zti =
[
fCNN(L

t
i), fPOS(p

t
i), fGLOB(g

t)
]
∈ R2d+

d
2 . (30)

Encoders:
Spatial CNN fCNN:

Conv2d(1→16, 3, p = 1) → ReLU → Conv2d(16→32, 3, p = 1) → ReLU
→ AdaptiveAvgPool2d(1× 1) → Flatten → Linear(32→d).

(31)

Position MLP fPOS:

Linear
(
2→d

)
→ ReLU → Linear

(
d→d

)
. (32)

Global MLP fGLOB:

Linear
(
2→ d

2

)
→ ReLU → Linear

(
d
2→

d
2

)
. (33)

Actor & Critic Heads:

πθ(a | ot
i) = softmax

(
W2 ReLU(W1 z

t
i)
)
, (34)

Vϕ(o
t
i) = W4 ReLU(W3 z

t
i), (35)

where W1 : R2.5d → d, W2 : Rd → 5,

W3 : R2.5d → d, W4 : Rd → 1.
(36)
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I Athabasca Multi-Seed Performance Overview

Figure 6: Athabasca Alberta Agents - Multi-Seed Performance Overview. Comprehensive perfor-
mance analysis across 5 independent random seeds showing agent specialization patterns. Top-left:
Average episode rewards with error bars indicating variance across seeds. Top-right: Coverage con-
tribution distribution showing balanced allocation among agents. Bottom-left: Reward distribution
box plots revealing performance consistency. Bottom-right: Performance consistency metrics across
different random initializations, demonstrating the robustness of learned coordination strategies.
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J Fort McMurray Multi-Seed Performance Overview

Figure 7: Fort McMurray Alberta Agents - Multi-Seed Performance Overview. Comprehensive
performance analysis across 5 independent random seeds showing agent coordination effectiveness
in complex river-corridor geography. Performance metrics demonstrate consistent learning across
different initializations, with agent specialization patterns emerging reliably across seeds. The re-
sults provide insights into coordination robustness and role emergence within the Fort McMurray
environment.
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K Athabasca Multi-Seed Coverage Analysis

Figure 8: Athabasca Alberta Agents - Multi-Seed Coverage Analysis. Detailed coverage behav-
ior analysis across multiple random seeds. Top-left: Combined coverage heatmap showing spatial
distribution patterns. Top-right: Coverage contribution distribution across all agents and seeds.
Bottom-left: Coverage efficiency progression over training steps. Bottom-right: Final coverage
distribution histogram with mean coverage efficiency. Results demonstrate consistent spatial coor-
dination and balanced area allocation across different random initializations.
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L Fort McMurray Multi-Seed Risk Assessment Analysis

Figure 9: Fort McMurray Alberta Agents - Multi-Seed Risk Assessment Analysis. Risk-aware
behavior analysis across multiple random seeds showing emergent risk assessment capabilities and
coordination patterns in complex river-corridor geography.
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M Athabasca Seed Comparison Analysis

Figure 10: Athabasca Alberta Agents - Seed Comparison Analysis. Statistical comparison across
different random initializations (seeds 42, 123, 456, 789, 1024). Top-left: Average total reward
variance by seed. Top-right: Coverage percentage consistency across seeds. Bottom-left: Episode
length distribution showing training stability. Bottom-right: Overall reward distribution demon-
strating learning robustness. The analysis confirms that learned behaviors are consistent and not
dependent on specific random initializations.
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N Athabasca Strategic Behavior Analysis

Figure 11: Athabasca Alberta Agents - Strategic Behavior Analysis. Multi-seed behavioral pat-
tern analysis revealing emergent coordination strategies. Top-left: Coverage efficiency distribution
showing consistent performance across seeds. Top-right: Coordination score distribution indicating
effective agent cooperation. Bottom-left: Exploration dominance patterns demonstrating behav-
ioral diversity. Bottom-right: Overall performance score distribution confirming strategic behavior
emergence. The analysis demonstrates that agents develop sophisticated coordination patterns con-
sistently across different random initializations.
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O Fort McMurray Strategic Behavior Analysis

Figure 12: Fort McMurray Alberta Agents - Strategic Behavior Analysis. Strategic coordination
analysis in complex geographical terrain across multiple seeds. The behavioral patterns show how
agents adapt their strategic coordination to Fort McMurray’s river-corridor geography while main-
taining consistent performance across different random initializations. Results demonstrate sophis-
ticated environmental adaptation and strategic behavior emergence.
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